Israeli scientists simulate life on Mars
                     Source: Xinhua | 2018-02-19 23:54:19 | Editor: huaxia

    Israeli scientists participate in an experiment simulating a mission to Mars, at the D-MARS Desert Mars Analog Ramon Station project of Israel's Space Agency, Ministry of Science, near Mitzpe Ramon, Israel, February 18, 2018. (Reuters Photo)

    JERUSALEM, Feb. 19 (Xinhua) -- A team of six Israeli scientists finished a four-day simulation of life on the planet Mars on Sunday.

    The mission was conducted in Israel's Negev desert in the south of the country near the Ramon crater, which is similar to Mars in terms of the land structure, geology, aridity, appearance and isolation.

    It is the first Israeli space simulation center but not the only one in the world. The simulation is designed to investigate and simulate possible life on Mars. During the simulation, participants were cut off from the world, as they conducted research studies, constructed buildings that suited the conditions on Mars and wore space suits.

    Israel, which has advanced space sciences, has only sent one astronaut to space so far. Although he was killed in the NASA Columbia space shuttle crash in 2003, it has not deterred the country from aspiring to send further astronauts to space. Israeli presence in global space programs is minor so far.

    Israel's space agency is a main sponsor of the event, together with leading universities, research centers and hi-tech companies in the country.

    The conditions in the shipping container mimic those on the red planet, aside from the lack of atmosphere and the reduced gravity. Outside, the Negev desert also serves as a location with many similarities to Mars. It is an isolated, dry area with stark geological resemblance to the distant planet.

    For Professor Guy Ron, a nuclear physicist from the Hebrew University in Jerusalem who was one of the six people inside the simulator, the desolate setting was the greatest challenge. He was responsible for the study on measuring cosmic radiation.

    "It is truly the defining factor, you are far away from everybody," he said. "I'm such an online person, being offline for four days was challenging and interesting."

    During the days of the experiment, the scientists were held up in the container and got to know each other intimately.

    "Unlike real astronauts, we did not get a chance to get to know each other before. We talked a lot," said Prof. Ron. "Bunking with someone is a great way to get to know them."

    The primary goal of the experiment was familiarization with the aspects of any mission to Mars. The participants were not only in an enclosed environment. They got accustomed to moving around in a cumbersome spacesuit with a heavy helmet on their heads.

    The scientists also got used to the delay in communication between Mars and Earth. In real life this is facilitated by a satellite uplink which makes for at least a three-minute lag between the two sides. Often this time period is significantly longer.

    Between them, they communicated with handheld radios.

    "I absolutely understand now how hard it is to do good science in these kind of conditions," Dr. Reut Sorek Abramovich told Xinhua on the site. Abramovich is a scientific advisor at the Davidson Institute of Science and Education, the education arm of the Weizmann Institute of Science.

    She was responsible for three simulation experiments, including a study to search for life using the collection of soil samples, exploring the feasibility of 3D printing using local soil and a psychological study on the effect of isolation and tension on the astronaut's functioning.

    Later this year, students from the institute are slated to take part in a shorter experiment.

    The long term aim is to enable research in areas of food technology, communications and remote sensoring.

    The difficulties that emerged during the simulation brought with them a lot of lessons for the future.

    "I would definitely use more robotics," Dr. Abramovich told Xinhua.

    She was the 2nd female in the team together with four males.

    "You need a certain type of mindset for women to survive with men," she laughed, hoping to see many more female astronauts in the future.

    Mars exploration is still much about dreams and hopes and less about reality.

    But for Prof. Ron, the reality is closer than many people think.

    "Kids that are in school now will be going to Mars," he believes.

    Back to Top Close
    Xinhuanet

    Israeli scientists simulate life on Mars

    Source: Xinhua 2018-02-19 23:54:19

    Israeli scientists participate in an experiment simulating a mission to Mars, at the D-MARS Desert Mars Analog Ramon Station project of Israel's Space Agency, Ministry of Science, near Mitzpe Ramon, Israel, February 18, 2018. (Reuters Photo)

    JERUSALEM, Feb. 19 (Xinhua) -- A team of six Israeli scientists finished a four-day simulation of life on the planet Mars on Sunday.

    The mission was conducted in Israel's Negev desert in the south of the country near the Ramon crater, which is similar to Mars in terms of the land structure, geology, aridity, appearance and isolation.

    It is the first Israeli space simulation center but not the only one in the world. The simulation is designed to investigate and simulate possible life on Mars. During the simulation, participants were cut off from the world, as they conducted research studies, constructed buildings that suited the conditions on Mars and wore space suits.

    Israel, which has advanced space sciences, has only sent one astronaut to space so far. Although he was killed in the NASA Columbia space shuttle crash in 2003, it has not deterred the country from aspiring to send further astronauts to space. Israeli presence in global space programs is minor so far.

    Israel's space agency is a main sponsor of the event, together with leading universities, research centers and hi-tech companies in the country.

    The conditions in the shipping container mimic those on the red planet, aside from the lack of atmosphere and the reduced gravity. Outside, the Negev desert also serves as a location with many similarities to Mars. It is an isolated, dry area with stark geological resemblance to the distant planet.

    For Professor Guy Ron, a nuclear physicist from the Hebrew University in Jerusalem who was one of the six people inside the simulator, the desolate setting was the greatest challenge. He was responsible for the study on measuring cosmic radiation.

    "It is truly the defining factor, you are far away from everybody," he said. "I'm such an online person, being offline for four days was challenging and interesting."

    During the days of the experiment, the scientists were held up in the container and got to know each other intimately.

    "Unlike real astronauts, we did not get a chance to get to know each other before. We talked a lot," said Prof. Ron. "Bunking with someone is a great way to get to know them."

    The primary goal of the experiment was familiarization with the aspects of any mission to Mars. The participants were not only in an enclosed environment. They got accustomed to moving around in a cumbersome spacesuit with a heavy helmet on their heads.

    The scientists also got used to the delay in communication between Mars and Earth. In real life this is facilitated by a satellite uplink which makes for at least a three-minute lag between the two sides. Often this time period is significantly longer.

    Between them, they communicated with handheld radios.

    "I absolutely understand now how hard it is to do good science in these kind of conditions," Dr. Reut Sorek Abramovich told Xinhua on the site. Abramovich is a scientific advisor at the Davidson Institute of Science and Education, the education arm of the Weizmann Institute of Science.

    She was responsible for three simulation experiments, including a study to search for life using the collection of soil samples, exploring the feasibility of 3D printing using local soil and a psychological study on the effect of isolation and tension on the astronaut's functioning.

    Later this year, students from the institute are slated to take part in a shorter experiment.

    The long term aim is to enable research in areas of food technology, communications and remote sensoring.

    The difficulties that emerged during the simulation brought with them a lot of lessons for the future.

    "I would definitely use more robotics," Dr. Abramovich told Xinhua.

    She was the 2nd female in the team together with four males.

    "You need a certain type of mindset for women to survive with men," she laughed, hoping to see many more female astronauts in the future.

    Mars exploration is still much about dreams and hopes and less about reality.

    But for Prof. Ron, the reality is closer than many people think.

    "Kids that are in school now will be going to Mars," he believes.

    010020070750000000000000011105091369858351
    主站蜘蛛池模板: 男女男精品网站| 成人免费激情视频| 我把小yi子cao了小说| 亚洲国产片在线观看| 精品久久久无码中文字幕天天 | 好吊妞这里有精品| 久久精品99无色码中文字幕| 欧美精品久久天天躁| 午夜亚洲av日韩av无码大全| 香蕉国产人午夜视频在线| 国产老女人精品免费视频| 一区二区不卡久久精品| 日本欧美大码aⅴ在线播放| 亚洲另类视频在线观看| 狠狠躁夜夜躁人人爽天天古典| 国产一区二区精品久久| 激情网站免费看| 国产草草影院ccyycom| sqy2wc厕所撒尿| 扒美女内裤摸她的机机| 久久精品国产亚洲av麻豆色欲| 欧美激情一区二区三区免费观看 | 亚洲韩精品欧美一区二区三区| 老司机午夜精品视频在线观看免费| 国产拍拍拍无码视频免费| 97精品国产高清自在线看超| 少妇无码太爽了视频在线播放| 久久久精品人妻一区二区三区| 欧美三级视频在线| 亚洲精品乱码久久久久久蜜桃| 精品国产一区二区三区久久狼| 国产亚洲精品美女| 很黄很污的视频在线观看| 国产高清一级片| jizzyou中国少妇| 成人动漫3d在线观看| 久久久午夜精品福利内容| 最新精品亚洲成a人在线观看| 亚洲成在线观看| 狂野黑人性猛交xxxxxx| 兽皇videos极品另类|