Astronomers capture most distant star ever seen
                     Source: Xinhua | 2018-04-03 03:23:41 | Editor: huaxia

    Icarus, whose official name is MACS J1149+2223 Lensed Star 1, is the farthest individual star ever seen. It is only visible because it is being magnified by the gravity of a massive galaxy cluster, located about 5 billion light-years from Earth. Called MACS J1149+2223, this cluster, shown at left, sits between Earth and the galaxy that contains the distant star. The panels at the right show the view in 2011, without Icarus visible, compared with the star's brightening in 2016. (Credit: NASA, ESA, and P. Kelly)

    WASHINGTON, April 2 (Xinhua) -- American astronomers have captured the most distant normal star ever observed, some 9 billion light years from Earth, thanks to a rare cosmic alignment.

    The study, published on Monday online in the journal Nature Astronomy, revealed the discovery of a star called Icarus, magnified by gravitational lensing by over 2,000 times.

    Astronomers routinely study galaxies much farther away, visible because they glow with the brightness of billions of stars. They also managed to study supernova, often brighter than the galaxy in which it sits.

    However, for a distance of about 100 million light years, the stars in these galaxies are impossible to make out individually.

    But a phenomenon called gravitational lensing, the bending of light by massive galaxy clusters in the line of sight, can magnify the distant universe and make dim, far away objects visible.

    The single star was discovered in NASA Hubble Space Telescope images taken in late April of 2016 and as recently as April 2017.

    "You can see individual galaxies out there, but this star is at least 100 times farther away than the next individual star we can study, except for supernova explosions," said Patrick Kelly at the University of Minnesota, Twin Cities, the paper's first author.

    These observations can provide a rare look at how stars evolve, especially the most luminous ones.

    "For the first time ever we're seeing an individual normal star - not a supernova, not a gamma ray burst, but a single stable star - at a distance of nine billion light years," said Alex Filippenko, a professor of astronomy at UC Berkeley and one of many co-authors of the report.

    The B-type star Icarus is much larger, more massive, hotter and possibly hundreds of thousands of times intrinsically brighter than our Sun.

    According to the researchers, an extended lens, like a galaxy cluster, can only magnify a background object up to 50 times, but smaller objects can magnify much more.

    A single star in a foreground lens, if precisely aligned with a background star, can magnify the background star thousands of times.

    In this case, a star about the size of our sun briefly passed directly through the line of sight between the distant star Icarus and Hubble, boosting its brightness significantly.

    Also, if the alignment was perfect, that single star within the cluster turned the light from the distant star into an "Einstein ring": a halo of light created when light from the distant star bends around all sides of the lensing star.

    The ring is too small to discern from this distance, but the effect made the star easily visible by magnifying its apparent brightness.

    The astronomers predict that Icarus will be magnified many times over the next decade as cluster stars move around, perhaps increasing its brightness as much as 10,000 times.

    Back to Top Close
    Xinhuanet

    Astronomers capture most distant star ever seen

    Source: Xinhua 2018-04-03 03:23:41

    Icarus, whose official name is MACS J1149+2223 Lensed Star 1, is the farthest individual star ever seen. It is only visible because it is being magnified by the gravity of a massive galaxy cluster, located about 5 billion light-years from Earth. Called MACS J1149+2223, this cluster, shown at left, sits between Earth and the galaxy that contains the distant star. The panels at the right show the view in 2011, without Icarus visible, compared with the star's brightening in 2016. (Credit: NASA, ESA, and P. Kelly)

    WASHINGTON, April 2 (Xinhua) -- American astronomers have captured the most distant normal star ever observed, some 9 billion light years from Earth, thanks to a rare cosmic alignment.

    The study, published on Monday online in the journal Nature Astronomy, revealed the discovery of a star called Icarus, magnified by gravitational lensing by over 2,000 times.

    Astronomers routinely study galaxies much farther away, visible because they glow with the brightness of billions of stars. They also managed to study supernova, often brighter than the galaxy in which it sits.

    However, for a distance of about 100 million light years, the stars in these galaxies are impossible to make out individually.

    But a phenomenon called gravitational lensing, the bending of light by massive galaxy clusters in the line of sight, can magnify the distant universe and make dim, far away objects visible.

    The single star was discovered in NASA Hubble Space Telescope images taken in late April of 2016 and as recently as April 2017.

    "You can see individual galaxies out there, but this star is at least 100 times farther away than the next individual star we can study, except for supernova explosions," said Patrick Kelly at the University of Minnesota, Twin Cities, the paper's first author.

    These observations can provide a rare look at how stars evolve, especially the most luminous ones.

    "For the first time ever we're seeing an individual normal star - not a supernova, not a gamma ray burst, but a single stable star - at a distance of nine billion light years," said Alex Filippenko, a professor of astronomy at UC Berkeley and one of many co-authors of the report.

    The B-type star Icarus is much larger, more massive, hotter and possibly hundreds of thousands of times intrinsically brighter than our Sun.

    According to the researchers, an extended lens, like a galaxy cluster, can only magnify a background object up to 50 times, but smaller objects can magnify much more.

    A single star in a foreground lens, if precisely aligned with a background star, can magnify the background star thousands of times.

    In this case, a star about the size of our sun briefly passed directly through the line of sight between the distant star Icarus and Hubble, boosting its brightness significantly.

    Also, if the alignment was perfect, that single star within the cluster turned the light from the distant star into an "Einstein ring": a halo of light created when light from the distant star bends around all sides of the lensing star.

    The ring is too small to discern from this distance, but the effect made the star easily visible by magnifying its apparent brightness.

    The astronomers predict that Icarus will be magnified many times over the next decade as cluster stars move around, perhaps increasing its brightness as much as 10,000 times.

    010020070750000000000000011105091370836751
    主站蜘蛛池模板: 国产精品lululu在线观看| 看一级毛片女人洗澡| 女欢女爱第一季| 亚洲s色大片在线观看| 精品视频麻豆入口| 欧美破苞合集magnet| 国产香蕉尹人在线观看视频| 久久国产一区二区三区| 高h辣肉嗨文公交车| 天天干天天操天天| 亚洲AV午夜成人片| 男女啪啪高清无遮挡免费| 国产在线视频www色| 99久久免费国产精品| 毛片视频在线免费观看| 国产亚州精品女人久久久久久 | 跪在校花脚下叼着女主人的鞋 | 亚洲精品动漫免费二区| 香港三日本三级人妇三级99| 在线天堂新版在线观看| 中文字幕亚洲欧美日韩不卡| 久久久亚洲欧洲日产国码农村 | 欧美日韩国产在线播放| 午夜伦理在线观看免费高清在线电影| 黄+色+性+人免费| 国产精品成人自拍| a级毛片高清免费视频就| 成年女性特黄午夜视频免费看| 久久综合亚洲色hezyo国产| 色视频线观看在线播放| 国产精品久久久久久久久kt| 99精品视频在线观看| 日韩在线观看中文字幕| 卡一卡二卡三免费专区2| 999精品视频在线观看| 成人免费午夜视频| 亚洲天堂中文字幕在线观看| 神宫寺奈绪jul055在线播放| 国产一区日韩二区欧美三区| 黄色永久免费网站| 国产综合色在线视频区|