Feature: Aussie scientists' global challenge to deter "overconfident" robots

    Source: Xinhua| 2019-10-25 19:55:31|Editor: Li Xia
    Video PlayerClose

    SYDNEY, Oct. 25 (Xinhua) -- We could soon live in a world where domestic service robots perform household chores and clean up for us as we go about our daily lives. But what if your new mechanical helper decides to put your laptop in the dishwasher, places your cat in the bathtub and throws your treasured possessions into the trash?

    Current vision systems being tested on "simulated" domestic robots in the cluttered, unpredictable environments of the real world, are suffering severely from what experts refer to as overconfidence -- meaning robots are unable to know when they don't know exactly what an object is.

    When introduced into our day to day lives, this overconfidence poses a huge risk to people's safety and belongings, and represents a barrier for the development of autonomous robotics.

    "These (models) are often trained on a specific data set, so you show it a lot of examples of different objects. But in the real world, you often encounter situations that are not part of that training data set," Niko Sünderhauf explained to Xinhua. He works as a chief investigator with the Australian Center for Robotic Vision (ACRV), headquartered at Queensland University of Technology.

    "So, if you train these systems to detect 100 different objects, and then it sees one that it has not seen before, it will just overconfidently think it is one of the object types it knows, and then do something with that, and that can be damaging to the object or very unsafe."

    Earlier this year, in an effort to curb these potentially cocky machines, Sünderhauf's team at the ACRV launched a world-first competition, the Robotic Vision Challenge, inviting teams from around the world to find a way to make robots less sure of themselves, and safer for the rest of us.

    Sünderhauf hopes that by crowdsourcing the problem and tapping into researchers' natural competitiveness, they can overcome this monumental stumbling block of modern robotics.

    The open-ended challenge has already captured global attention due to its implications regarding one of the most excitement inducing and ear-tingling concepts in robotics today -- deep learning.

    While it dates back to the 1980s, deep learning "boomed" in 2012 and was hailed as a revolution in artificial intelligence, enabling robots to solve all kinds of complex problems without assistance, and behaving more like humans in the way they see, listen and think.

    When applied to tasks like photo-captioning, online ad targeting, or even medical diagnosis, deep learning has proved incredibly efficient, and many organizations reliably employ these methods, with the cost of mistakes being relatively low.

    However, when you introduce these intelligence systems into a physical machine which will interact with people and animals in the real world -- the stakes are decidedly higher.

    "As soon as you put these systems on robots that work in the real world the consequences can be severe, so it's really important to get this part right and have this inbuilt uncertainty and caution in the system," Sünderhauf said.

    To solve these issues would undoubtedly play a part in taking robotics to the next level, not just in delivering us our autonomous housekeepers, but in a range of other applications from autonomous cars and drones to smart sidewalks and robotic shop attendants.

    "I think this is why this push is coming out of the robotic vision lab at the moment from our side, because we understand it's important and we understand that deep learning can do a lot of important things," Sünderhauf said.

    "But you need to combine these aspects with being able to detect objects and understand them."

    Since it was launched in the middle of the year, the competition has had 111 submissions from 18 teams all around the world and Sünderhauf said that while results have been promising, there is still a long way to go to where they want to be.

    The competition provides participants with 200,000 realistic images of living spaces from 40 simulated indoor video sequences, including kitchens, bedrooms, bathrooms and even outdoor living areas, complete with clutter, and rich with uncertain objects.

    Entrants are required to develop the best possible system of probabilistic object detection, which can accurately estimate spatial and semantic uncertainty.

    Sünderhauf hopes that the ongoing nature of the challenge will motivate teams to come up with a solution which may well propel robotics research and application on a global scale.

    "I think everybody's a little bit competitive and if you can compare how good your algorithm and your research is with a lot of other people around the world who are working on the same problem, it's just very inspiring," Sünderhauf said.

    "It's like the Olympic Games -- when everybody competes under the same rules, and you can see who is doing the best."

    In November, Sünderhauf will travel with members of his team to the annual International Conference on Intelligent Robots and Systems (IROS) held in Macao, China to present and discuss their findings so far.

    As one of three leading robotics conferences in the world, IROS is a valuable opportunity for researchers to come together to compare notes, and collaborate on taking technology to the next level.

    "There will be a lot of interaction and discussion around the ways forward and that will be really exciting to see what everybody thinks and really excited to see different directions," Sünderhauf said.

    TOP STORIES
    EDITOR’S CHOICE
    MOST VIEWED
    EXPLORE XINHUANET
    010020070750000000000000011100001385028851
    主站蜘蛛池模板: 欧美fxxx性| 精精国产XXXX视频在线| 天堂网www中文在线| 久久国产精品偷| 波多野结衣痴汉| 四虎国产精品永久免费网址| 五月丁六月停停| 女人张开腿无遮无挡图| 久久久久久久久久久久久久久| 欧美国产一区二区| 免费人成在线观看网站品爱网 | 亚洲最大看欧美片网站| 精品欧美成人高清在线观看| 国产情侣真实露脸在线| 55夜色66夜色国产精品视频| 好爽好紧好多水| 丰满女邻居的嫩苞张开视频 | 992人人tv| 影音先锋人妻啪啪av资源网站| 久久天堂AV综合色无码专区| 欧美一区二区三区在观看| 亚洲精品在线电影| 精品一区二区三区在线视频| 国产一级毛片在线| 精品一久久香蕉国产二月| 国产线视频精品免费观看视频| julia无码人妻中文字幕在线| 扒开双腿猛进入喷水免费视频| 久久综合九色欧美综合狠狠| 欧美无人区码卡二卡3卡4免费| 人人狠狠综合久久亚洲婷婷| 精品国产欧美一区二区| 国产丰满麻豆videossexhd| 九九免费观看全部免费视频| 波多野结衣导航| 午夜免费福利在线| 西西人体大胆免费视频| 国产日韩欧美成人| 一区两区三不卡| 国产超碰人人模人人爽人人喊| free哆拍拍免费永久视频|